
HOMOTOPY TYPE THEORY WITH AN INTERVAL TYPE

VALERY ISAEV

1. Introduction

We define a version of homotopy type theory based on a notion of the interval
type. We give a simple formulation of the univalence axiom and describe a few
extenisons of the system.

The first extension is called data types with conditions. Data types with con-
ditions generalize ordinary data types, allowing us to define not only coproducts
of types, but also pushouts of certain functions (which we can call cofibrations).
Using data types with condtions, we will show how to define higher inductive types
which have a simple description of elimination principles.

The second extension is called records with conditions and it is dual to the first
one. Using this extensions, we can define path types for which the usual elimination
principle J holds.

2. Syntax

In this section, we will describe the inference rules of the basic system, which
has Π-types and path types. We denote by ⇔ the computational equality, which
is a reflexive, symmetric, and transitive closure of a union of ⇔η and ⇒, which is
a union of ⇒β and ⇒σ. Inference and reduction rules are defined in table 1.

The main ingridient of the system is the interval type I, which allows us to give
a simple computational description of path types, univalence, and higher inductive
types. The interval type has two constructors (left and right) and one elimination
rule (coe). The behaviour of coe can be described as follows: given a fibration
λx ⇒ A over I and a point a in the fibre over left, λi ⇒ coeλx⇒A a i gives us a
section of this fibration.

Path types are heterogeneous, that is we can construct paths between different
types (which are itself connected by a path). We write a =A a

′ (or simply a = a′)
for usual homogeneous paths, which are defined as Path (λi ⇒ A) a a′. A path
between a and a′ over λx ⇒ A is a function p : (x : I) → A such that p left ⇔ a
and p right⇔ a′. But we still can define usual functions for path types using these
constructions.

Identity path (reflexivity) is a constant function λi⇒ x.

idp : (x : A)→ x = x

idp = λx⇒ path (λi⇒ x)

Path map (congruence) is defined in terms of a function composition. If we have
a function p : I → A and a function f : A → B, then f ◦ p : I → B is a path

1

2 VALERY ISAEV

∅ `
Γ ` A , x /∈ Γ

Γ, x : A `
Γ ` , x : A ∈ Γ

Γ ` x : A

Γ ` a : A Γ ` B , A⇔ B
Γ ` a : B

Γ ` A Γ, x : A ` B
Γ ` (x : A)→ B

Γ, x : A ` b : B

Γ ` λx⇒ b : (x : A)→ B

Γ ` f : (x : A)→ B Γ ` a : A

Γ ` f a : B[x := a]

Γ `
Γ ` I

Γ `
Γ ` left : I

Γ `
Γ ` right : I

Γ, x : I ` A Γ ` a : A[x := left] Γ ` j : I

Γ ` coeλx⇒A a j : A[x := j]

Γ, x : I ` A Γ ` a : A[x := left] Γ ` a′ : A[x := right]

Γ ` Path (λx⇒ A) a a′

Γ, x : I ` a : A

Γ ` path (λx⇒ a) : Path (λx⇒ A) a[x := left] a[x := right]

Γ ` p : Path (λx⇒ A) a a′ Γ ` i : I

Γ ` p @a,a′ i : A[x := i]

(λx⇒ b) a⇒β b[x := a]

coeλk⇒A a left⇒β a

coeλk⇒A a i⇒σ a if k /∈ FV (A)

path (λx⇒ t) @a,a′ i⇒β t[x := i]

p @a,a′ left⇒β a

p @a,a′ right⇒β a
′

(λx⇒ f x)⇔η f if x /∈ FV (f)

path (λx⇒ p @ x)⇔η p if x /∈ FV (p)

Table 1. Inference and reduction rules.

between f (p left) and f (p right).

pmap : (f : A→ B)→ (a a′ : A)→ a = a′ → f a = f a′

pmap = λf a a′ p⇒ path (λi⇒ f (p @ i))

It is well known that functional extensionality can be defined in terms of an
interval type.

funExt : (f g : (a : A)→ B[x := a])→ ((a : A)→ f a = g a)→ f = g

funExt = λf g p⇒ path (λi a⇒ p a @ i)

HOMOTOPY TYPE THEORY WITH AN INTERVAL TYPE 3

Transporting along a path (substitution) is defined as a coercion along a path in
types:

transport : (a a′ : A)→ a = a′ → B[x := a]→ B[x := a′]

transport = λa a′ p b⇒ coeλi⇒B[x:=p @ i] b right

The definition of J is a little bit more complicated. First, we need to define a
function squeeze, satisfying the following rules:

squeeze : I → I → I

squueze left j ⇒ left

squueze right j ⇒ j

squueze i left⇒ left

squueze i right⇒ i

The idea is that for each point on the interval i : I function squeeze i : I → I
maps left to left and right to i, so it squeezes the interval. Using squeeze we can
defined a useful function psqueeze, which squeezes paths.

psqueeze : (x y : A)(p : x = y)(i : I)→ x = p @ i

psqueeze = λx y p i⇒ path (λj ⇒ p @ squeeze i j)

Using psqueeze we can define J as follows:

J : ((a : A)→ B[x := a, y := a, p := idp a])→ (x y : A)(p : x = y)→ B

J = λd x y p⇒ coeλi⇒B[y:=p @ i,p:=psqueeze x y p i] (d x) right

This definition type checks since psqueeze satisfies the following rules:

psqueeze x y p left⇔ idp x

psqueeze x y p right⇔ p

2.1. Cubical fillers. The theory we are describing has many similarities to the
theory of cubical sets. The reason is that we already have a 1-cube, namely the
interval type, and we can define an n-cube to be the product of intervals. We do
not have the product type yet, but we can form a context x1 : I, . . . xn : I, and a
term of type A in this context is simply an n-cube in A. Another reason is that
coe gives us all n-dimensional fillers for cubical horns. We will use this to define
squeeze in a similar way it is done in the appendix of [1].

Given an n-dimensional cubical horn we can always find a filler for it as follows:

fill1λx1⇒A a1 j1 = coeλx1⇒A a1 j1

filln+1
λxn+1⇒A (λxn ⇒ an+1) (λxn ⇒ a′n+1) . . .

(λx2̂,n+1 ⇒ a2) (λx2̂,n+1 ⇒ a′2) (λx1̂,n+1 ⇒ a1) =

λjn+1 ⇒ fillnλxn⇒Path (λxn+1⇒A) an+1 a′n+1

(λxn−1 ⇒ path (λxn+1 ⇒ an)) (λxn−1 ⇒ path (λxn+1 ⇒ a′n)) . . .

(λx2̂,n ⇒ path (λxn+1 ⇒ a2)) (λx2̂,n ⇒ path (λxn+1 ⇒ a′2))

(λx1̂,n ⇒ path (λxn+1 ⇒ a1)) j1 . . . jn @ jn+1

4 VALERY ISAEV

Here, xk denotes the sequence x1 . . . xk, and xî,k denotes the sequence x1 . . . xi−1 xi+1 . . . xk.

The idea is that ai and a′i are hyperfaces of an n-dimensional cube over A that form
a cubical horn, and filln gives us a filler of this horn.

In order for this to make sense, A, ai, and a′i must satisfy the following rules:

xn ` A xî,n ` ai : A[xi := left] xî,n ` a
′
i : A[xi := right]

ai1 [xi2 := left]⇔ ai2 [xi1 := left] a′i1 [xi2 := left]⇔ ai2 [xi1 := right]

ai1 [xi2 := right]⇔ a′i2 [xi1 := left] a′i1 [xi2 := right]⇔ a′i2 [xi1 := right]

In this case filln satisfies the following typing rule:

` fillnλx⇒A (λxn−1 ⇒ an) (λxn−1 ⇒ a′n) . . .

(λx2̂,n ⇒ a2) (λx2̂,n ⇒ a′2) (λx1̂,n ⇒ a1)

: (jn : I)→ A[x1 := j1] . . . [xn := jn].

If jk is equal to left or right for some k, then filln on j1 . . . jn equals to ak[x1 :=
j1] . . . [xn := jn] or a′k[x1 := j1] . . . [xn := jn] respectively. So filln indeed returns
an n-cube with given hyperfaces.

Now, we can define function squeeze which satisfies the required rules. There
rules can be stated as follows. We need to find a function squeeze : I → I → I,
which is given on borders by the following diagram:

left
λi⇒left//

λj⇒left
��

left

λj⇒j
��

left
λi⇒i
// right

We can define function sq, which satisfies three of the four rules, by filling the
following horn:

left
λi⇒left//

λj⇒left
��

left

λj⇒j
��

left right

sq : I → I → I

sq = fill2λi j⇒I (λj ⇒ left) (λj ⇒ j) (λi⇒ left)

Now, we can construct squeeze, which satisfies all of the rules, by filling the
following horn:

left //

��

left

��

left //

��

dd

left

��

99

left //
zz

left
%%

left // right

HOMOTOPY TYPE THEORY WITH AN INTERVAL TYPE 5

The inner, left, and top squares are λi j ⇒ left, the bottom and right squares are
sq, and the filler gives us the outter square which is the required function squeeze.

squeeze : I → I → I

squeeze = fill3λx1 x2 x3⇒I (λx1 x2 ⇒ left) sq (λx1 x3 ⇒ left) sq (λx2 x3 ⇒ left) right

2.2. Univalent universes. Now, we show how to add a univalent universe to the
system.

Γ `
Γ ` Type

Γ `
Γ ` I : Type

Γ ` A : Type Γ, x : A ` B : Type

Γ ` (x : A)→ B : Type

Γ ` A : Type

Γ ` B : Type
Γ ` f : A→ B
Γ ` g : B → A

Γ ` p : (a : A)→ g (f a) = a

Γ ` q : (b : B)→ f (g b) = b Γ ` i : I

Γ ` iso A B f g p q i : Type

We also add the following reduction rules:

• iso A B f g p q left⇒β A
• iso A B f g p q right⇒β B
• iso A B (λx⇒ x) (λx⇒ x) idp idp i⇒β A
• coeλk⇒isoAB f g p q k a right⇒β f a if k /∈ FV (A B f g p q)

Usually, univalence is stated in the form of an axiom as follows:

isContr A = Σ (a : A) ((a′ : A)→ a = a′)

isEquiv f = (b : B)→ isContr (Σ (a : A) (f a = b))

pte : (A B : Type)→ A = B → Σ (f : A→ B) (isEquiv f)

pte = λA B p⇒ (transport A B p,)

univalence = (A B : Type)→ isEquiv (pte A B)

Instead of there should be a proof that transport A B p is an equivalence, which
we omit because of its length.

We can show that univalence holds using iso. First, we construct the following
function

etp : (A B : Type)→ Σ (f : A→ B) (isEquiv f)→ A = B

etp = λA B p⇒ path (λi⇒ iso A B p.proj1 i)

Omitted terms can be constructed using a proof of isEquiv f .
To prove that pte A B is an equivalence it is enough to show that etp A B

is its inverse. The first components of pairs pte A B (etp A B (f, e)) and (f, e)
are equal definitionally, and its second components are equal since isEquiv f is
a proposition. Finally, we need to show that for each p : A = B we have a path
etp A B (pte A B p) = p. After applying J we only need to show this for p = idp A,
but this holds definitionally.

6 VALERY ISAEV

2.3. Data types with conditions. In this section we describe, we will describe an
extension of usual inductive data types, which allows us to define higher inductive
types. To do this, we need to describe a way of defining functions over inductive
data types. Traditionally such functions are defined either by pattern matching
or through eliminators. The former is more convenient when working inside the
theory, but the latter is easier to describe formally. Our approach combines both
of these methods.

To allow definitions of data types and functions we extend the system by intro-
ducing the notion of signature. A signature consists of declarations of data types
and functions. We need to modify our typing judgements:

• Σ; Γ ` means that Γ is well typed context in signature Σ.
• Σ; Γ ` A means that A is a well typed type in context Γ and signature Σ.
• Σ; Γ ` a : A means that a is a well typed term of type A in context Γ and

signature Σ.

We omit Σ from the notation if it is clear which signature we are using.
An inductive data type D with parameters a1 : A1, . . . an : An is described by a

list of its constructors, and for each constructor a list of types of its arguments:

c1 (x1 : B1
1) . . . (xk1 : B1

k1)

...

cm (x1 : Bm1) . . . (xkm : Bmkm)

We require data types to be strictly positive, which means that if D appears in
Bij , then Bij = F (D a1 . . . an) for some a1, . . . an and some strictly positive F . A
function F is strictly positive if it is inductively generated by the following rules:

• F (Z) = Z
• F (Z) = Path (λi⇒ F (Z)) z1 z2
• F (Z) = (e : E)→ F (Z)

We say that a data type is simple if it doesn’t use the last rule in the description
of F . Of course, a data type definition must be well typed, which means that the
following holds:

• Σ; a1 : A1. . . . an : An `.
• Σ, D′;x1 : Bi1, . . . xj−1 : Bij−1 ` Bij for each constructor ci and each 1 ≤ j ≤
ki, where D′ is a data type with the same parameters as D, but without
constructors.

A function definition consists of a name of the function with its type and a body
of the function:

f : (x1 : A1) . . . (xn : An)→ B

f x1 . . . xn ⇒ b

The definition is well typed if x1 : A1, . . . xn : An ` b : B. We also introduce
another way of defining a function, which is writtern like this:

f ′ : (x1 : A1) . . . (xn : An)→ B

f ′ x1 . . . xn ⇐ b

Such definitions are well typed if the following holds:

x1 : A1, . . . xn : An ` b : B

HOMOTOPY TYPE THEORY WITH AN INTERVAL TYPE 7

The difference between these definitions lies in the computation rules. For the
former definition we add usual computation rules:

f a1 . . . an ⇒β b[x1 := a1] . . . [xn := an]

For the latter computation rules are defined by the following inductive rule:

b[x1 := a1] . . . [xn := an]⇒t b
′

f ′ a1 . . . an ⇒β b
′

where ⇒t is the union of the basic reduction rules that we gave in table 1 and here
for function definitions. That is, ⇒t makes reductions only on the top level of the
term, but not inside it. Such definitions are useful when the right hand side is a big
term, which usually performs some sort of case analysis by pattern matching, and
we want to reduce a function application only when this case analysis is satisfied.

To allow definitions by pattern matching we introduce new primitive operator
elim:

elim e { c1 x1 . . . xk1 = b1; . . . ; cm x1 . . . xkm = bm },
where each of the = signs is either ⇒ or ⇐, xi are variables, ci are constructors
of some data type, and e and bi are some terms. The set of rules inside { } is
unordered, and each constructor ci occurs exactly once. Reduction rules are the
following:

bi[x1 := a1] . . . [xn := an]⇒t b
′

,
elim ci a1 . . . aki { ci x1 . . . xki ⇐ bi; . . . } ⇒β b

′

elim ci a1 . . . aki { ci x1 . . . xki ⇒ bi; . . . } ⇒β bi[x1 := a1] . . . [xki := aki].

Inference rules for elim are the following:
Γ, y : D p1 . . . pn ` B
Γ ` e : D p1 . . . pn
Γ, x1 : Ai1, . . . xki : Aiki ` bi : B[y := ci x1 . . . xki] for each 1 ≤ i ≤ m

,
Γ ` elim e { c1 x1 . . . xk1 = b1; . . . ; cm x1 . . . xkm = bm } : B[y := e]

where ci (x1 : Ai1) . . . (xki : Aiki) are constructors of data type D.
To allow recursive definitions we introduce new context, which consists of recur-

sive calls to the function we are defining. Now, judgements look like this Γ; ρ ` a : A.
Here, Γ is the usual context, and ρ is the recursive calls context. A recursive func-
tion f as before is well typed if the following holds:

x1 : A1, . . . xn : An; f x1 . . . xn : B ` b : B

We add the following inference rule, which allows us to use recursive calls:

Γ; t : T, t1 : T1, . . . tn : Tn ` ti : Ti
The first entry t : T is always a recursive call to the function with the same argu-
ments, so we do not allow to use it.

We add inference rules for elim, which extends recursive calls context appropri-
ately:

Γ ` B Γ′i; ρ
′
i ` bi : B[zj := ci x1 . . . xki] for each 1 ≤ i ≤ m ,

Γ; ρ ` elim zj { c1 x1 . . . xk1 = b1; . . . ; cm x1 . . . xkm = bm } : B

where zj is a variable in context Γ, and contexts Γ′i and ρ′i are defined as follows:

• If Γ = z1 : Z1, . . . zs : Zs, then Γ′i = z1 : Z1, . . . zj−1 : Zj−1, x1 : Ai1, . . . xki :
Aiki , zj+1 : Zj+1[zj := ci x1 . . . xki], . . . zs : Zs[zj := ci x1 . . . xki].
•

8 VALERY ISAEV

A data type with conditions also allows us to put a condition on a constructor.
A condition on a constructor is simply a partial definition of a function with the
type of this constructor. Syntactically, this means that constructors now can be
evaluated if its arguments match one of the clauses of this partially defined function.
Also, this means that when we define a function over such a data type we need to
check that this definition respects conditions.

Semantically, ordinary data types allow to define coproducts of types, and data
types with conditions allow us to define pushouts. One of the maps in the pushout
diagram must be given by a collection of constructors of a data type, which means
it is (often can be interpreted as) a cofibration. This implies that this pushout is
allways a correct homotopy pushout.

Let us give an example. We can define integers as the data type with two
constructors:

negative : N→ Z

positive : N→ Z.
The problem is that we get two different zeros: negative 0 and positive 0. Of

course, we can define −1 to be negative 0, −2 to be negative 1, and so one, but
this can easily lead to a confusion. It is better to identify the positive and the

negative zeros, that is to define Z as the pushout of 1
0→ N with itself. So, we add

the following condition to the definition of Z:

negative 0 = positive 0.

Now, when we define a function f over Z, we need to check that f (negative 0)⇔
f (positive 0).

Using data types with conditions, we can define higher inductive types. For
example, the circle S1 can be defined as follows: it has two constructors

base : S1

loop : I → S1

and two conditions

loop left = base

loop right = base.

After we add path types, it will be posible to describe elimination rules for such
data types, but it is more convenient to simply define functions over them.

2.4. Records with conditions. Records with conditions are dual to data types
with conditions. Ordinary records allow us to define product of types, and records
with conditions allow us to define pullbacks. A record is given by a list of fields, and
a record with conditions can additionally put conditions on some fields. A condition
on a field is a partially defined function with the type of this field. Semantically,
such a record is given by a pullback of a function (B → X) → (A → X) for some
cofibration A→ B, which means that it is still fibrant.

Let us show how to define path types as a record with conditions. It will be a
record Path with three parameters A : I → Type, a : A left, and a′ : A right.
We will define a “heterogeneous path type” because it seems impossible to define
useful elimination rules for higher inductive types using only homogeneous path

HOMOTOPY TYPE THEORY WITH AN INTERVAL TYPE 9

types. We abbreviate Path (λi ⇒ A) a a′ to a = a′. The record Path (A : I →
Type) (a : A left) (a′ : A right) has one constructor

path : ((i : I)→ A i)→ Path (A : I → Type) (a : A left) (a′ : A right),

one field
at : (i : I)→ A i,

and two conditions
at left = a

at right = a′.

When we define an element of a record with conditions, we need to check that
it satisfies them. And when we access fields with conitions, they might evaluate,
if arguments to it match some condition on it. For example, if p : a = a′, then
p.at left evaluates to a, p.at right evaluates to a′, and if we want to consruct a path
of type a = a′, then we need to specify a function f : I → A such that f left⇔ a
and f right⇔ a′.

We can define the J rule as follows:

idp : (A : Type)(a : A)→ Path (λi⇒ A) a a
idp A a = path(λi⇒ a)

J : (A : Type)(C : (x y : A)→ x = y → Type)→
((a : A)→ C a a (idp A a))→ (a a′ : A)(p : a = a′)→ C a a′ p

J A C d a a′ p = coeλi⇒C a (p.at i) (path (λj⇒ p.at (squeeze i j))) left (d a) right

Now, we can prove the univalence axiom in its usual form, which states that
a certain function F is equivalence. Function F maps path types A = B to the
type of functions A → B which are equivalences. We can construct an inverse G
to function F : given an equivalence A→ B, G construct a path A = B using iso.
If f : A→ B is an equivalence, then F (G f) definitionally equals to f because of
the compuation rule for iso. If p : A = B, then we can show that there is a path
between G (F p) and p using J . Actually, we can’t use J directly because of the
size issues, but we can expand its definition, and then it works fine.

3. A model of data types and records with conditions

In this section, we will show how to interpret data types and records with con-
ditions in simplicial sets.

3.1. Data types with conditions. Each constructor of a data type gives us an
accessible functor Ci : sSet→ sSet.

3.2. Records with conditions.

References

1. Marc Bezem, Thierry Coquand, and Simon Huber, A model of type theory in cubical sets,

(2014).

